Water Surface Flight Control of a Cross Domain Robot Based on an Adaptive and Robust Sliding Mode Barrier Control Algorithm
نویسندگان
چکیده
When a cross-domain robot (CDR) flies on the water surface, large pitch angle and roll may lead to flooding into cabin or even overturning. In addition, CDR is influenced by some uncertain parameters external disturbances, such as resistance current. To constrain attitude improve robustness of controller, non-singular terminal sliding mode asymmetric barrier control (NTSMABC) algorithm proposed. All disturbances are regarded lump disturbance, radial basis function neural network (RBFNN) designed compensate for output controllers. Unlike traditional quadrotors, controls yaw paddles when surface. prevent actuator saturation from rolling over due excessive angular velocity, an adaptive integral (AISMBC) proposed velocity directly. This adaptively adjusts gain surface suppress influence disturbance robot. Another RBFNN controller. Simulation results demonstrate effectiveness methods.
منابع مشابه
Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملRobust Integral Sliding-Mode Control of an Aerospace Launch Vehicle
An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...
متن کاملAdaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملrobust sliding mode controller for trajectory tracking and attitude control of a nonholonomic spherical mobile robot
based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. in this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. the state space representatio...
متن کاملAdaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields
Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aerospace
سال: 2022
ISSN: ['2226-4310']
DOI: https://doi.org/10.3390/aerospace9070332